A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Structural basis for converting a general transcription factor into an operon-specific virulence regulator




TekijätBelogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV, Vassylyev DG, Artsimovitch I

Julkaisuvuosi2007

JournalMolecular Cell

Tietokannassa oleva lehden nimiMol Cell

Vuosikerta26

Numero1

DOIhttps://doi.org/S1097-2765(07)00121-9 [pii] 10.1016/j.molcel.2007.02.021

Verkko-osoitehttp://www.sciencedirect.com/science?\_ob=ArticleURL&\_udi=B6WSR-4NGCY1R-B&\_user=3366836&\_rdoc=1&\_fmt=&\_orig=search&\_sort=d&view=c&\_acct=C000058403&\_version=1&\_urlVersion=0&\_userid=3366836&md5=487711c7ab6311efd7ed718104beaace http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list\_uids=17434131


Tiivistelmä
RfaH, a paralog of the general transcription factor NusG, is recruited to elongating RNA polymerase at specific regulatory sites. The X-ray structure of Escherichia coli RfaH reported here reveals two domains. The N-terminal domain displays high similarity to that of NusG. In contrast, the alpha-helical coiled-coil C domain, while retaining sequence similarity, is strikingly different from the beta barrel of NusG. To our knowledge, such an all-beta to all-alpha transition of the entire domain is the most extreme example of protein fold evolution known to date. Both N domains possess a vast hydrophobic cavity that is buried by the C domain in RfaH but is exposed in NusG. We propose that this cavity constitutes the RNA polymerase-binding site, which becomes unmasked in RfaH only upon sequence-specific binding to the nontemplate DNA strand that triggers domain dissociation. Finally, we argue that RfaH binds to the beta' subunit coiled coil, the major target site for the initiation sigma factors.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 13:49