A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Identification in Z(2) using Euclidean balls




TekijätJunnila V, Laihonen T

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2011

JournalDiscrete Applied Mathematics

Tietokannassa oleva lehden nimiDISCRETE APPLIED MATHEMATICS

Lehden akronyymiDISCRETE APPL MATH

Numero sarjassa5

Vuosikerta159

Numero5

Aloitussivu335

Lopetussivu343

Sivujen määrä9

ISSN0166-218X

DOIhttps://doi.org/10.1016/j.dam.2010.12.008

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/Publication/2324036


Tiivistelmä
The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin. These codes find their application, for example, in sensor networks. The network is modelled by a graph. In this paper, the goal is to find good identifying codes in a natural setting, that is, in a graph epsilon(r) = (V, E) where V = Z(2) is the set of vertices and each vertex (sensor) can check its neighbours within Euclidean distance r. We also consider a graph closely connected to a well-studied king grid, which provides optimal identifying codes for epsilon(root 5) and epsilon(root 13). (C) 2010 Elsevier B.V. All rights reserved.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:12