A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Critical points of a-solutions of quasilinear elliptic equations
Tekijät: Martio O., Miklyukov V., Vuorinen M.
Julkaisuvuosi: 1999
Lehti:: Houston Journal of Mathematics
Tietokannassa oleva lehden nimi: Houston Journal of Mathematics
Vuosikerta: 25
Numero: 3
Aloitussivu: 583
Lopetussivu: 601
ISSN: 0362-1588
Verkko-osoite: http://api.elsevier.com/content/abstract/scopus_id:0040631555
Tiivistelmä
Critical points of solutions to degenerate elliptic equations in R, n ≥ 2, consist of good (N-points) and bad points. Pseudoharmonic functions (n = 2), in the sense of Morse, have good points only. We give an estimate for the modulus of continuity of a generalized solution at an N-point. An analog of Sard's theorem is proved.
Critical points of solutions to degenerate elliptic equations in R, n ≥ 2, consist of good (N-points) and bad points. Pseudoharmonic functions (n = 2), in the sense of Morse, have good points only. We give an estimate for the modulus of continuity of a generalized solution at an N-point. An analog of Sard's theorem is proved.