AN EXTREMAL DECOMPOSITION PROBLEM FOR HARMONIC MEASURE




Dubinin VN, Vuorinen M

PublisherAMER MATHEMATICAL SOC

2012

Proceedings of the American Mathematical Society

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

P AM MATH SOC

7

140

7

2441

2446

6

0002-9939

DOIhttps://doi.org/10.1090/S0002-9939-2011-11109-2



is greater than or equal to the harmonic measure omega(rho, E*, D*), where E* = {z : z(n) is an element of [-1,0]) and D* = {z : vertical bar z vertical bar < 1, vertical bar arg z vertical bar < pi/n}. This implies, for instance, a solution to a problem of R. W. Barnard, L. Cole, and A. Yu. Solynin concerning a lower estimate of the quantity inf (E) max(k=1), ..., (n) omega(a(k), E, D-k) for arbitrary points of the circle vertical bar z vertical bar = p. These authors stated this hypothesis in the particular case when the points are equally distributed on the circle vertical bar z vertical bar = rho.



Last updated on 2024-26-11 at 11:28