A1 Refereed original research article in a scientific journal

AN EXTREMAL DECOMPOSITION PROBLEM FOR HARMONIC MEASURE




AuthorsDubinin VN, Vuorinen M

PublisherAMER MATHEMATICAL SOC

Publication year2012

JournalProceedings of the American Mathematical Society

Journal name in sourcePROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

Journal acronymP AM MATH SOC

Number in series7

Volume140

Issue7

First page 2441

Last page2446

Number of pages6

ISSN0002-9939

DOIhttps://doi.org/10.1090/S0002-9939-2011-11109-2(external)


Abstract
is greater than or equal to the harmonic measure omega(rho, E*, D*), where E* = {z : z(n) is an element of [-1,0]) and D* = {z : vertical bar z vertical bar < 1, vertical bar arg z vertical bar < pi/n}. This implies, for instance, a solution to a problem of R. W. Barnard, L. Cole, and A. Yu. Solynin concerning a lower estimate of the quantity inf (E) max(k=1), ..., (n) omega(a(k), E, D-k) for arbitrary points of the circle vertical bar z vertical bar = p. These authors stated this hypothesis in the particular case when the points are equally distributed on the circle vertical bar z vertical bar = rho.


Research Areas



Last updated on 2024-26-11 at 11:28