A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Locally identifying colourings for graphs with given maximum degree




TekijätFoucaud F, Honkala I, Laihonen T, Parreau A, Perarnau G

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2012

JournalDiscrete Mathematics

Tietokannassa oleva lehden nimiDISCRETE MATHEMATICS

Lehden akronyymiDISCRETE MATH

Numero sarjassa10

Vuosikerta312

Numero10

Aloitussivu1832

Lopetussivu1837

Sivujen määrä6

ISSN0012-365X

DOIhttps://doi.org/10.1016/j.disc.2012.01.034

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/2227592


Tiivistelmä
A proper vertex-colouring of a graph G is said to be locally identifying if for any pair u, v of adjacent vertices with distinct closed neighbourhoods, the sets of colours in the closed neighbourhoods of u and v are different. We show that any graph G has a locally identifying colouring with 2 Delta(2) - 3 Delta + 3 colours, where Delta is the maximum degree of G, answering in a positive way a question asked by Esperet et al. We also provide similar results for locally identifying colourings which have the property that the colours in the neighbourhood of each vertex are all different and apply our method to the class of chordal graphs. (c) 2012 Elsevier B.V. All rights reserved.


Research Areas


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:31