The distribution of alpha p modulo one
: Matomaki K
Publisher: CAMBRIDGE UNIV PRESS
: 2009
: Mathematical Proceedings of the Cambridge Philosophical Society
: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY
: MATH PROC CAMBRIDGE
: 147
: 267
: 283
: 17
: 0305-0041
DOI: https://doi.org/10.1017/S030500410900245X
We prove that, for any irrational number alpha, there are infinitely many primes p such that ||alpha p|| < p^(-1/3+epsilon). Here ||y|| denotes the distance from y to the nearest integer. The proof uses Harman's sieve method with arithmetical information coming from bounds for averages of Kloosterman sums.