The distribution of alpha p modulo one




Matomaki K

PublisherCAMBRIDGE UNIV PRESS

2009

Mathematical Proceedings of the Cambridge Philosophical Society

MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY

MATH PROC CAMBRIDGE

147

267

283

17

0305-0041

DOIhttps://doi.org/10.1017/S030500410900245X



We prove that, for any irrational number alpha, there are infinitely many primes p such that ||alpha p|| < p^(-1/3+epsilon). Here ||y|| denotes the distance from y to the nearest integer. The proof uses Harman's sieve method with arithmetical information coming from bounds for averages of Kloosterman sums.

Last updated on 2025-14-10 at 10:16