A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Vinogradov's three primes theorem with almost twin primes
Tekijät: Kaisa Matomäki, Xuancheng Shao
Kustantaja: CAMBRIDGE UNIV PRESS
Julkaisuvuosi: 2017
Journal: Compositio Mathematica
Tietokannassa oleva lehden nimi: COMPOSITIO MATHEMATICA
Lehden akronyymi: COMPOS MATH
Vuosikerta: 153
Numero: 6
Aloitussivu: 1220
Lopetussivu: 1256
Sivujen määrä: 37
ISSN: 0010-437X
eISSN: 1570-5846
DOI: https://doi.org/10.1112/S0010437X17007072
Verkko-osoite: https://www.cambridge.org/core/journals/compositio-mathematica/article/vinogradovs-three-primes-theorem-with-almost-twin-primes/F9F16D0810AD32E055BC1002C35CBE05
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/20698389
In this paper we prove two results concerning Vinogradov's three primes theorem with primes that can be called almost twin primes. First, for any in, every sufficiently large odd integer N can be written as a sum of three primes p(1), p(2) and p(3) such that, for each i is an element of {1, 2, 3}, the interval [p(i), p(i) + H] contains at least m, primes, for some H = H (m). Second, every sufficiently large integer N 3 (mod 6) can be written as a sum of three primes p(1), p(2) and p(3) such that, for each i is an element of {1, 2, 3}, p(i) + 2 has at most two prime factors.
Ladattava julkaisu This is an electronic reprint of the original article. |