A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Vinogradov's three primes theorem with almost twin primes




TekijätKaisa Matomäki, Xuancheng Shao

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2017

JournalCompositio Mathematica

Tietokannassa oleva lehden nimiCOMPOSITIO MATHEMATICA

Lehden akronyymiCOMPOS MATH

Vuosikerta153

Numero6

Aloitussivu1220

Lopetussivu1256

Sivujen määrä37

ISSN0010-437X

eISSN1570-5846

DOIhttps://doi.org/10.1112/S0010437X17007072

Verkko-osoitehttps://www.cambridge.org/core/journals/compositio-mathematica/article/vinogradovs-three-primes-theorem-with-almost-twin-primes/F9F16D0810AD32E055BC1002C35CBE05

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/20698389


Tiivistelmä
In this paper we prove two results concerning Vinogradov's three primes theorem with primes that can be called almost twin primes. First, for any in, every sufficiently large odd integer N can be written as a sum of three primes p(1), p(2) and p(3) such that, for each i is an element of {1, 2, 3}, the interval [p(i), p(i) + H] contains at least m, primes, for some H = H (m). Second, every sufficiently large integer N 3 (mod 6) can be written as a sum of three primes p(1), p(2) and p(3) such that, for each i is an element of {1, 2, 3}, p(i) + 2 has at most two prime factors.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:19