A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On local injectivity and asymptotic linearity of quasiregular mappings
Tekijät: Gutlyanskiǐ V., Martio O., Ryazanov V., Vuorinen M.
Julkaisuvuosi: 1998
Lehti:: Studia Mathematica
Tietokannassa oleva lehden nimi: Studia Mathematica
Vuosikerta: 128
Numero: 3
Aloitussivu: 243
Lopetussivu: 271
ISSN: 0039-3223
Verkko-osoite: http://api.elsevier.com/content/abstract/scopus_id:0032413318
Tiivistelmä
It is shown that the approximate continuity of the dilatation matrix of a quasiregular mapping f at x implies the local injectivity and the asymptotic linearity of f at x. Sufficient conditions for log|f(x) - f(x)| to behave asymptotically as log|x - x| are given. Some global injectivity results are derived.
It is shown that the approximate continuity of the dilatation matrix of a quasiregular mapping f at x implies the local injectivity and the asymptotic linearity of f at x. Sufficient conditions for log|f(x) - f(x)| to behave asymptotically as log|x - x| are given. Some global injectivity results are derived.