A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On Vertex-Robust Identifying Codes of Level Three




TekijätHonkala Iiro, Laihonen Tero

KustantajaCHARLES BABBAGE RES CTR

Julkaisuvuosi2010

JournalArs Combinatoria

Tietokannassa oleva lehden nimiARS COMBINATORIA

Lehden akronyymiARS COMBINATORIA

Vuosikerta94

Aloitussivu115

Lopetussivu127

Sivujen määrä13

ISSN0381-7032

Verkko-osoitehttp://www.combinatorialmath.ca/arscombinatoria/vol94.html

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/Publication/2042130


Tiivistelmä
Assume that G = (V, E) is an undirected and connected graph, and consider C subset of V. For every v is an element of V, let I(r)(v) = {u is an element of C : d(u, v) <= r}, where d(u, v) denotes the number of edges on any shortest path between u to v in G. If all the sets I(r)(v) for v is an element of V are pairwise different, and none of them is the empty set, C is called an r-identifying code. In this paper, we consider t-vertex-robust r-identifying codes of level s, that is, r-identifying codes such that they cover every vertex at least s times and the code is vertex-robust in the sense that vertical bar I(r)(u) Delta I(r)(v)vertical bar >= 2t+1 for any two different vertices u and v. Vertex-robust identifying codes of different levels are examined, in particular, of level 3. We give bounds (sometimes exact values) on the density or cardinality of the codes in binary hypercubes and in some infinite grids.


Research Areas


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:21