O2 Muu julkaisu

Algorithmics of Tensor-Based Preference Learning




TekijätTapio Pahikkala

ToimittajaJohannes Fürnkranz, Eyke Hüllermeier, Cynthia Rudin, Scott Sanner, Roman Słowiński

Konferenssin vakiintunut nimiDagstuhl Seminar 14101 Preference Learning

Julkaisuvuosi2014

Lehti:Dagstuhl Reports

Kokoomateoksen nimiReport from Dagstuhl Seminar 14101 Preference Learning

Sarjan nimiDagstuhl Reports

Numero sarjassa3

Vuosikerta4

Aloitussivu18

Lopetussivu18

Sivujen määrä1

Verkko-osoitedrops.dagstuhl.de/opus/volltexte/2014/4550/pdf/dagrep_v004_i003_p001_s14101.pdf


Tiivistelmä

We consider the problem of learning utility functions and rankings with paired inputs and tensor-based kernel functions defined on such inputs. With paired inputs, we refer to the ones consisting of a condition and an object part. The condition being, for example, a query object given at prediction time, the learned model assigns scores for a set of target objects also given at prediction time, that indicate the conditional utility of the targets for the query. We present a new learning algorithm for the considered setting whose computational efficiency is improved with tensor-algebraic optimization.




Last updated on 2024-26-11 at 19:28