O2 Muu julkaisu
Algorithmics of Tensor-Based Preference Learning
Tekijät: Tapio Pahikkala
Toimittaja: Johannes Fürnkranz, Eyke Hüllermeier, Cynthia Rudin, Scott Sanner, Roman Słowiński
Konferenssin vakiintunut nimi: Dagstuhl Seminar 14101 Preference Learning
Julkaisuvuosi: 2014
Journal: Dagstuhl Reports
Kokoomateoksen nimi: Report from Dagstuhl Seminar 14101 Preference Learning
Sarjan nimi: Dagstuhl Reports
Numero sarjassa: 3
Vuosikerta: 4
Aloitussivu: 18
Lopetussivu: 18
Sivujen määrä: 1
Verkko-osoite: drops.dagstuhl.de/opus/volltexte/2014/4550/pdf/dagrep_v004_i003_p001_s14101.pdf
We consider the problem of learning utility functions and rankings with paired inputs and tensor-based kernel functions defined on such inputs. With paired inputs, we refer to the ones consisting of a condition and an object part. The condition being, for example, a query object given at prediction time, the learned model assigns scores for a set of target objects also given at prediction time, that indicate the conditional utility of the targets for the query. We present a new learning algorithm for the considered setting whose computational efficiency is improved with tensor-algebraic optimization.