A1 Refereed original research article in a scientific journal
Relationship between muscle blood flow and oxygen uptake during exercise in endurance-trained and untrained men
Authors: Kalliokoski KK, Knuuti J, Nuutila P
Publication year: 2005
Journal acronym: J.Appl.Physiol (1985.)
Volume: 98
Issue: 1
First page : 380
Last page: 383
Number of pages: 4
Web address : PM:15347632
Abstract
A recent study showed good correlation between regional blood flow (BF) and oxygen uptake (Vo(2)) 30 min after exhaustive exercise. The question that remains open is whether there is similar good correlation between BF and Vo(2) also during exercise. We reanalyzed our previous data from a study in which BF and Vo(2) was measured in different quadriceps femoris muscles in seven healthy endurance-trained and seven healthy untrained men at rest and during low-intensity intermittent static knee-extension exercise (Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, and Nuutila P. Am J Physiol Endocrinol Metab 280: E1015-E1021, 2001). When the mean values of each muscle were considered, there was good correlation between BF and Vo(2) during exercise in both groups (r(2) = 0.82 in untrained and 0.97 in trained). However, when calculated individually, the correlations were poorer, and the mean correlation coefficient (r(2)) was significantly higher in the trained men (0.71 +/- 0.07 vs. 0.40 +/- 0.11, P = 0.03). These results suggest that there is large individual variation in matching BF to Vo(2) in human skeletal muscles during exercise, ranging from very poor to excellent. Furthermore, this matching seems to be better in the endurance-trained than in untrained men
A recent study showed good correlation between regional blood flow (BF) and oxygen uptake (Vo(2)) 30 min after exhaustive exercise. The question that remains open is whether there is similar good correlation between BF and Vo(2) also during exercise. We reanalyzed our previous data from a study in which BF and Vo(2) was measured in different quadriceps femoris muscles in seven healthy endurance-trained and seven healthy untrained men at rest and during low-intensity intermittent static knee-extension exercise (Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, and Nuutila P. Am J Physiol Endocrinol Metab 280: E1015-E1021, 2001). When the mean values of each muscle were considered, there was good correlation between BF and Vo(2) during exercise in both groups (r(2) = 0.82 in untrained and 0.97 in trained). However, when calculated individually, the correlations were poorer, and the mean correlation coefficient (r(2)) was significantly higher in the trained men (0.71 +/- 0.07 vs. 0.40 +/- 0.11, P = 0.03). These results suggest that there is large individual variation in matching BF to Vo(2) in human skeletal muscles during exercise, ranging from very poor to excellent. Furthermore, this matching seems to be better in the endurance-trained than in untrained men