A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On the generating function of discrete Chebyshev polynomials




TekijätNikita Gogin, Mika Hirvensalo

Konferenssin vakiintunut nimiPolynomial Computer Algebra 2016

KustantajaSt. Petersburg Department of V. A. Steklov Mathematical Institute, Russian Academy of Sciences

Julkaisuvuosi2016

JournalZapiski Nauchnyh Seminarov Pomi

Sarjan nimiZapiski Nauchnykh Seminarov POMI

Vuosikerta448

Aloitussivu124

Lopetussivu134

ISSN0373-2703

eISSN0373-2703

Verkko-osoiteftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v448/p135.pdf


Tiivistelmä

We give a closed form for the generating function of the discrete
Chebyshev polynomials. The closed form consists of the MacWilliams
transform of Jacobi polynomials together with a binomial multiplicative
factor. It turns out that the desired closed form is a solution to
a special case of the Heun differential equation, and that the closed
form implies combinatorial identities that appear quite challenging to
prove directly



Last updated on 2024-26-11 at 23:22