A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Hilbert Metric in the Unit Ball




TekijätRainio Oona, Vuorinen Matti

KustantajaAkademiai Kiado ZRt.

Julkaisuvuosi2023

JournalStudia Scientiarum Mathematicarum Hungarica

Tietokannassa oleva lehden nimiStudia Scientiarum Mathematicarum Hungarica

Vuosikerta60

Numero2-3

Aloitussivu175

Lopetussivu191

eISSN1588-2896

DOIhttps://doi.org/10.1556/012.2023.01544

Verkko-osoitehttps://akjournals.com/view/journals/012/60/2-3/article-p175.xml


Tiivistelmä

The Hilbert metric between two points 𝑥, 𝑦 in a bounded convex domain 𝐺 is defined as the logarithm of the cross-ratio 𝑥, 𝑦 and the intersection points of the Euclidean line passing through the points 𝑥, 𝑦 and the boundary of the domain. Here, we study this metric in the case of the unit ball 𝔹𝑛. We present an identity between the Hilbert metric and the hyperbolic metric, give several inequalities for the Hilbert metric, and results related to the inclusion properties of the balls defined in the Hilbert metric. Furthermore, we study the distortion of the Hilbert metric under conformal and quasiregular mappings.



Last updated on 2025-27-03 at 22:04