A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Image augmentation with conformal mappings for a convolutional neural network




TekijätRainio Oona, Nasser Mohamed M. S., Vuorinen Matti, Klén Riku

KustantajaSpringer Nature

Julkaisuvuosi2023

JournalComputational and Applied Mathematics

Tietokannassa oleva lehden nimiComputational and Applied Mathematics

Artikkelin numero361

Vuosikerta42

Numero8

eISSN1807-0302

DOIhttps://doi.org/10.1007/s40314-023-02501-9

Verkko-osoitehttps://link.springer.com/article/10.1007/s40314-023-02501-9

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/182073198


Tiivistelmä

For augmentation of the square-shaped image data of a convolutional neural network (CNN), we introduce a new method, in which the original images are mapped onto a disk with a conformal mapping, rotated around the center of this disk and mapped under such a Möbius transformation that preserves the disk, and then mapped back onto their original square shape. This process does not result the loss of information caused by removing areas from near the edges of the original images unlike the typical transformations used in the data augmentation for a CNN. We offer here the formulas of all the mappings needed together with detailed instructions how to write a code for transforming the images. The new method is also tested with simulated data and, according the results, using this method to augment the training data of 10 images into 40 images decreases the amount of the error in the predictions by a CNN for a test set of 160 images in a statistically significant way (p = 0.0360).


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-03 at 22:00