A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On bi-infinite and conjugate post correspondence problems




TekijätFinkel Olivier, Halava Vesa, Harju Tero, Sahla Esa

KustantajaEDP Sciences

Julkaisuvuosi2023

JournalRAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications

Tietokannassa oleva lehden nimiRAIRO - Theoretical Informatics and Applications

Artikkelin numero7

Vuosikerta57

ISSN2804-7346

eISSN1290-385X

DOIhttps://doi.org/10.1051/ita/2023008

Verkko-osoitehttps://doi.org/10.1051/ita/2023008

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/181953141


Tiivistelmä

We study two modifications of the Post Correspondence Problem (PCP), namely (1) the bi-infinite version, where it is asked whether there exists a bi-infinite word such that two given morphisms agree on it, and (2) the conjugate version, where we require the images of a solution for two given morphisms are conjugates of each other. For the conjugate PCP we give an undecidability proof by reducing it to the word problem for a special type of semi-Thue systems and for the bi-infinite PCP we give a simple argument that it is in the class Σ20 of the arithmetical hierarchy.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-03 at 21:59