A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
EEG-based emotion recognition using modified covariance and ensemble classifiers
Tekijät: Subasi Abdulhamit, Mian Qaisar Saeed
Kustantaja: Springer Science and Business Media Deutschland GmbH
Julkaisuvuosi: 2023
Journal: Journal of Ambient Intelligence and Humanized Computing
Tietokannassa oleva lehden nimi: Journal of Ambient Intelligence and Humanized Computing
eISSN: 1868-5145
DOI: https://doi.org/10.1007/s12652-023-04715-5
Verkko-osoite: https://doi.org/10.1007/s12652-023-04715-5
The Electroencephalography (EEG)-based precise emotion identification is one of the most challenging tasks in pattern recognition. In this paper, an innovative EEG signal processing method is devised for an automated emotion identification. The Symlets-4 filters based “Multi Scale Principal Component Analysis” (MSPCA) is used to denoise and reduce the raw signal’s dimension. Onward, the “Modified Covariance” (MCOV) is used as a feature extractor. In the classification step, the ensemble classifiers are used. The proposed method achieved 99.6% classification accuracy by using the ensemble of Bagging and Random Forest (RF). It confirms effectiveness of the devised method in EEG-based emotion recognition.