A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Axioms for centrality scoring with principal eigenvectors
Tekijät: Mitri Kitti
Kustantaja: springer
Julkaisuvuosi: 2016
Journal: Social Choice and Welfare
Lehden akronyymi: SOC CHOICE WELFARE
Vuosikerta: 46
Numero: 3
Aloitussivu: 639
Lopetussivu: 653
Sivujen määrä: 15
ISSN: 0176-1714
eISSN: 1432-217X
DOI: https://doi.org/10.1007/s00355-015-0931-2
Verkko-osoite: http://link.springer.com/article/10.1007/s00355-015-0931-2
Techniques based on using principal eigenvector decomposition of matrices representing binary relations of sets of alternatives are commonly used in social sciences, bibliometrics, and web search engines. By representing the binary relations as a directed graph the question of ranking or scoring the alternatives can be turned into the relevant question of how to score the nodes of the graph. This paper characterizes the principal eigenvector of a matrix as a scoring function with a set of axioms. Furthermore, a method of assessing individual and group centralities simultaneously is characterized by a set of axioms. A special case of this method is the hyperlink-induced topic search for ranking websites. In general, the method can be applied to aggregation of preferences or judgments to obtain a collective assessment of alternatives.