A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

H&E image analysis pipeline for quantifying morphological features




TekijätAriotta Valeria, Lehtonen Oskari, Salloum Shams, Micoli Giulia, Lavikka Kari, Rantanen Ville, Hynninen Johanna, Virtanen Anni, Hautaniemi Sampsa

KustantajaElsevier BV

Julkaisuvuosi2023

JournalJournal of Pathology Informatics

Tietokannassa oleva lehden nimiJournal of pathology informatics

Lehden akronyymiJ Pathol Inform

Artikkelin numero100339

Vuosikerta14

eISSN2153-3539

DOIhttps://doi.org/10.1016/j.jpi.2023.100339

Verkko-osoitehttps://doi.org/10.1016/j.jpi.2023.100339

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/181786525


Tiivistelmä
Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:19