A2 Vertaisarvioitu katsausartikkeli tieteellisessä lehdessä
Machine learning approaches in microbiome research: challenges and best practices
Tekijät: Papoutsoglou Georgios, Tarazona Sonia, Lopes Marta B., Klammsteiner Thomas, Ibrahimi Eliana, Eckenberger Julia, Novielli Pierfrancesco, Tonda Alberto, Simeon Andrea, Shigdel Rajesh, Béreux Stéphane, Vitali Giacomo, Tangaro Sabina, Lahti Leo, Temko Andriy, Claesson Marcus J., Berland Magali
Kustantaja: Frontiers Research Foundation
Julkaisuvuosi: 2023
Journal: Frontiers in Microbiology
Tietokannassa oleva lehden nimi: FRONTIERS IN MICROBIOLOGY
Lehden akronyymi: FRONT MICROBIOL
Artikkelin numero: 1261889
Vuosikerta: 14
Sivujen määrä: 21
eISSN: 1664-302X
DOI: https://doi.org/10.3389/fmicb.2023.1261889
Verkko-osoite: https://doi.org/10.3389/fmicb.2023.1261889
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/181463346
Microbiome data predictive analysis within a machine learning (ML) workflow presents numerous domain-specific challenges involving preprocessing, feature selection, predictive modeling, performance estimation, model interpretation, and the extraction of biological information from the results. To assist decision-making, we offer a set of recommendations on algorithm selection, pipeline creation and evaluation, stemming from the COST Action ML4Microbiome. We compared the suggested approaches on a multi-cohort shotgun metagenomics dataset of colorectal cancer patients, focusing on their performance in disease diagnosis and biomarker discovery. It is demonstrated that the use of compositional transformations and filtering methods as part of data preprocessing does not always improve the predictive performance of a model. In contrast, the multivariate feature selection, such as the Statistically Equivalent Signatures algorithm, was effective in reducing the classification error. When validated on a separate test dataset, this algorithm in combination with random forest modeling, provided the most accurate performance estimates. Lastly, we showed how linear modeling by logistic regression coupled with visualization techniques such as Individual Conditional Expectation (ICE) plots can yield interpretable results and offer biological insights. These findings are significant for clinicians and non-experts alike in translational applications.
Ladattava julkaisu This is an electronic reprint of the original article. |