A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Predicting banking crises with artificial neural networks: The role of nonlinearity and heterogeneity




TekijätKim Ristolainen

KustantajaWiley-Blackwell

Julkaisuvuosi2018

JournalScandinavian Journal of Economics

Vuosikerta120

Numero1

Aloitussivu31

Lopetussivu62

Sivujen määrä32

ISSN0347-0520

DOIhttps://doi.org/10.1111/sjoe.12216

Verkko-osoitehttp://onlinelibrary.wiley.com/doi/10.1111/sjoe.12216/abstract;jsessionid=84E991400EDD7FF223D439DF392F1193.f02t03


Tiivistelmä

The early warning system (EWS) literature on banking crises usually relies on linear
classifiers, estimated with international datasets. We construct an EWS based on an artificial
neural network (ANN) model, and also account for regional heterogeneity in order to improve
the generalization ability of EWS models. All of the banking crises in our test set are then
predictable at a 24 month horizon, using information from earlier crises. For some countries,
estimation with a regional dataset significantly improves the predictions. The ANN
outperforms the usual logit regression, assessed by the area under the receiver operating
characteristics curve.



Last updated on 2024-26-11 at 15:31