A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Neighbourhood complexity of graphs of bounded twin-width
Tekijät: Bonnet Éouard, Foucaud Florent, Lehtilä Tuomo, Parreau Aline
Kustantaja: Academic Press
Julkaisuvuosi: 2023
Journal: European Journal of Combinatorics
Tietokannassa oleva lehden nimi: European Journal of Combinatorics
Artikkelin numero: 103772
Vuosikerta: 115
ISSN: 0195-6698
eISSN: 1095-9971
DOI: https://doi.org/10.1016/j.ejc.2023.103772
Verkko-osoite: https://doi.org/10.1016/j.ejc.2023.103772
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/180959727
We give essentially tight bounds for, ν(d, k), the maximum number of distinct neighbourhoods on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus–Tardos theorem, two independent works (Bonnet et al., 2022; Przybyszewski, 2022) have shown the upper bound ν(d, k) ⩽ exp(exp(O(d)))k, with a double-exponential dependence in the twin-width. The work of Gajarsky et al. (2022), using the framework of local types, implies the existence of a single-exponential bound (without explicitly stating such a bound). We give such an explicit bound, and prove that it is essentially tight. Indeed, we give a short self-contained proof that for every d and k
ν(d, k) ⩽ (d + 2)2d+1k = 2d+log d+Θ(1)k,
and build a bipartite graph implying ν(d, k) ⩾ 2d+log d+Θ(1)k, in the regime when k is large enough compared to d.
Ladattava julkaisu This is an electronic reprint of the original article. |