A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Euclid preparation XXIX. Water ice in spacecraft Part I: The physics of ice formation and contamination




TekijätSchirmer M, Thurmer K, Bras B, Cropper M, Martin-Fleitas J, Goueffon Y, Kohley R, Mora A, Portaluppi M, Racca GD, Short AD, Szmolka S, Venancio LMG, Altmann M, Balog Z, Bastian U, Biermann M, Busonero D, Fabricius C, Grupp F, Jordi C, Loffler W, Selles AS, Aghanim N, Amara A, Amendola L, Baldi M, Bodendorf C, Bonino D, Branchini E, Brescia M, Brinchmann J, Camera S, Candini GP, Capobianco V, Carbone C, Carretero J, Castellano M, Cavuoti S, Cimatti A, Cledassou R, Congedo G, Conselice CJ, Conversi L, Copin Y, Corcione L, Courbin F, Da Silva A, Degaudenzi H, Di Giorgio AM, Dinis J, Dubath F, Dupac X, Dusini S, Farrens S, Ferriol S, Frailis M, Franceschi E, Fumana M, Galeotta S, Garilli B, Gillard W, Gillis B, Giocoli C, Haugan SVH, Hoekstra H, Holmes W, Hormuth F, Hornstrup A, Jahnke K, Kermiche S, Kiessling A, Kilbinger M, Kitching T, Kunz M, Kurki-Suonio H, Ligori S, Lilje PB, Lloro I, Maiorano E, Mansutti O, Marggraf O, Markovic K, Marulli F, Massey R, Medinaceli E, Mei S, Mellier Y, Meneghetti M, Merlin E, Meylan G, Moresco M, Moscardini L, Munari E, Nakajima R, Niemi SM, Nightingale JW, Nutma T, Padilla C, Paltani S, Pasian F, Pettorino V, Pires S, Polenta G, Poncet M, Popa LA, Raison F, Renzi A, Rhodes J, Riccio G, Romelli E, Roncarelli M, Rossetti E, Saglia R, Sapone D, Sartoris B, Schneider P, Secroun A, Seidel G, Serrano S, Sirignano C, Sirri G, Skottfelt J, Stanco L, Tallada-Crespi P, Taylor AN, Tereno I, Toledo-Moreo R, Tutusaus I, Valentijn EA, Valenziano L, Vassallo T, Wang Y, Weller J, Zacchei A, Zoubian J, Andreon S, Bardelli S, Battaglia P, Bozzo E, Colodro-Conde C, Farina M, Gracia-Carpio J, Keihanen E, Lindholm V, Maino D, Mauri N, Morisset N, Scottez V, Tenti M, Zucca E, Akrami Y, Baccigalupi C, Ballardini M, Biviano A, Blanchard A, Borlaff AS, Burigana C, Cabanac R, Cappi A, Carvalho CS, Casas S, Castignani G, Castro T, Chambers KC, Cooray AR, Coupon J, Courtois HM, Cuby JG, Davini S, De Lucia G, Desprez G, Di Domizio S, Dole H, Escartin JA, Escoffier S, Ferrero I, Gabarra L, Ganga K, Garcia-Bellido J, George K, Giacomini F, Gozaliasl G, Hildebrandt H, Kajava JJE, Kansal V, Kirkpatrick CC, Legrand L, Liebing P, Loureiro A, Maggio G, Magliocchetti M, Mainetti G, Maoli R, Marcin S, Martinelli M, Martinet N, Martins CJAP, Matthew S, Maturi M, Maurin L, Metcalf RB, Monaco P, Morgante G, Nadathur S, Nucita AA, Patrizii L, Pollack JE, Popa V, Potter D, Pontinen M, Sanchez AG, Sakr Z, Schneider A, Sereno M, Shulevski A, Simon P, Steinwagner J, Teyssier R, Valiviita J

KustantajaEDP SCIENCES S A

Julkaisuvuosi2023

JournalAstronomy and Astrophysics

Tietokannassa oleva lehden nimiASTRONOMY & ASTROPHYSICS

Lehden akronyymiASTRON ASTROPHYS

Artikkelin numero A142

Vuosikerta675

Sivujen määrä34

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202346635

Verkko-osoitehttps://doi.org/10.1051/0004-6361/202346635

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/180692156


Tiivistelmä
Material outgassing in a vacuum leads to molecular contamination, a well-known problem in spaceflight. Water is the most common contaminant in cryogenic spacecraft, altering numerous properties of optical systems. Too much ice means that Euclid's calibration requirements cannot be met anymore. Euclid must then be thermally decontaminated, which is a month-long risky operation. We need to understand how ice affects our data to build adequate calibration and survey plans. A comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records. We then review the formation of thin ice films, and find that for Euclid a mix of amorphous and crystalline ices is expected. Their surface topography - and thus optical properties - depend on the competing energetic needs of the substrate-water and the water-water interfaces, and they are hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images of thin ice films. Sophisticated tools exist to compute contamination rates, and we must understand their underlying physical principles and uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of outgassing estimates. We developed a water transport model to compute contamination rates in Euclid, and find agreement with industry estimates within the uncertainties. Tests of the Euclid flight hardware in space simulators did not pick up significant contamination signals, but they were also not geared towards this purpose; our in-flight calibration observations will be much more sensitive. To derive a calibration and decontamination strategy, we need to understand the link between the amount of ice in the optics and its effect on the data. There is little research about this, possibly because other spacecraft can decontaminate more easily, quenching the need for a deeper understanding. In our second paper, we quantify the impact of iced optics on Euclid's data.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:33