A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Composite values of shifted exponentials
Tekijät: Järviniemi Olli, Teräväinen Joni
Kustantaja: ACADEMIC PRESS INC ELSEVIER SCIENCE
Julkaisuvuosi: 2023
Journal: Advances in Mathematics
Tietokannassa oleva lehden nimi: ADVANCES IN MATHEMATICS
Lehden akronyymi: ADV MATH
Artikkelin numero: 109187
Vuosikerta: 429
Sivujen määrä: 48
ISSN: 0001-8708
eISSN: 1090-2082
DOI: https://doi.org/10.1016/j.aim.2023.109187
Verkko-osoite: https://doi.org/10.1016/j.aim.2023.109187
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/180521382
A well-known open problem asks to show that 2n + 5 is composite for almost all values of n. This was proposed by Gil Kalai as a possible Polymath project, and was first posed by Christopher Hooley. We settle this problem assuming GRH and a form of the pair correlation conjecture. We in fact do not need the full power of the pair correlation conjecture, and it suffices to assume an inequality of Brun- Titchmarsh type in number fields that is implied by the pair correlation conjecture. Our methods apply in fact to any shifted exponential sequence of the form an - b and show that, under the same assumptions, such numbers are k-almost primes for a density 0 of natural numbers n. Furthermore, under the same assumptions we show that ap - b is composite for almost all primes p whenever (a, b) ≠ (2, 1).
Ladattava julkaisu This is an electronic reprint of the original article. |