A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Composite values of shifted exponentials




TekijätJärviniemi Olli, Teräväinen Joni

KustantajaACADEMIC PRESS INC ELSEVIER SCIENCE

Julkaisuvuosi2023

JournalAdvances in Mathematics

Tietokannassa oleva lehden nimiADVANCES IN MATHEMATICS

Lehden akronyymiADV MATH

Artikkelin numero 109187

Vuosikerta429

Sivujen määrä48

ISSN0001-8708

eISSN1090-2082

DOIhttps://doi.org/10.1016/j.aim.2023.109187

Verkko-osoitehttps://doi.org/10.1016/j.aim.2023.109187

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/180521382


Tiivistelmä

A well-known open problem asks to show that 2n + 5 is composite for almost all values of n. This was proposed by Gil Kalai as a possible Polymath project, and was first posed by Christopher Hooley. We settle this problem assuming GRH and a form of the pair correlation conjecture. We in fact do not need the full power of the pair correlation conjecture, and it suffices to assume an inequality of Brun- Titchmarsh type in number fields that is implied by the pair correlation conjecture. Our methods apply in fact to any shifted exponential sequence of the form an - b and show that, under the same assumptions, such numbers are k-almost primes for a density 0 of natural numbers n. Furthermore, under the same assumptions we show that ap - b is composite for almost all primes p whenever (a, b) ≠ (2, 1).


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:16