A1 Refereed original research article in a scientific journal
Engineered green alga Chlamydomonas reinhardtii as a whole-cell photosynthetic biocatalyst for stepwise photoproduction of H-2 and ε-caprolactone
Authors: Siitonen Vilja, Probst Anna, Tóth Gábor, Kourist Robert, Schroda Michael, Kosourov Sergey, Allahverdiyeva Yagut
Publisher: ROYAL SOC CHEMISTRY
Publication year: 2023
Journal: Green Chemistry
Journal acronym: GREEN CHEM
Volume: 25
Issue: 15
First page : 5945
Last page: 5955
Number of pages: 11
ISSN: 1463-9262
eISSN: 1463-9270
DOI: https://doi.org/10.1039/d3gc01400b
Web address : https://doi.org/10.1039/D3GC01400B
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/180372732
Photosynthetic whole-cell biocatalysts are promising platforms for direct production of solar chemicals. Here, we employed the green microalga Chlamydomonas reinhardtii (hereafter Chlamydomonas) as a heterologous host for the cyclohexanone monooxygenase (CHMO) enzyme that converts exogenously added cyclohexanone to ε-caprolactone by utilising photosynthetically produced molecular oxygen (O2) and nicotinamide adenine dinucleotide phosphate (NADPH). In addition, the innate capability of Chlamydomonas to photoproduce molecular hydrogen (H2) was utilised in a one-pot stepwise production of H2 and ε-caprolactone. H2 photoproduction catalysed by innate O2-sensitive [Fe-Fe]-hydrogenase was facilitated by initial microoxic conditions and gradually declined due to accumulation of photosynthetic O2. This was accompanied by the biotransformation of cyclohexanone to ε-caprolactone by the heterologous CHMO. The optimal conditions for the formation of ε-caprolactone were the presence of acetate in the medium (mixotrophia), relatively low light intensity (26 µmol photons m-2 s-1) and addition of a low amount of ethanol [1.7% (vol/vol)]. The latter serves as a substrate inhibitor for the innate alcohol dehydrogenase (ADH) driven formation of cyclohexanol from cyclohexanone, thereby preventing competition between CHMO and ADH for the substrate, cyclohexanone. The formation of ε-caprolactone was further improved by introducing a signal sequence at the N-terminus of CHMO that directs the enzyme to the chloroplast enriched both with photosynthetic NADPH and O2, thus exploiting the compartmentalised nature of Chlamydomonas cell structure. This approach presents new opportunities for photosynthetic green chemicals production.
Downloadable publication This is an electronic reprint of the original article. |