A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Proximinal sets and connectedness in graphs
Tekijät: Chaira Karim, Dovgoshey Oleksiy
Kustantaja: Springer
Julkaisuvuosi: 2023
Journal: Journal of Mathematical Sciences
Tietokannassa oleva lehden nimi: Journal of Mathematical Sciences (United States)
Vuosikerta: 273
Numero: 3
Aloitussivu: 333
Lopetussivu: 350
DOI: https://doi.org/10.1007/s10958-023-06502-1
Verkko-osoite: https://doi.org/10.1007/s10958-023-06502-1
TLet G be a graph with a vertex set V. The graph G is path-proximinal if there is a semimetric d : V × V → [0, ∞[and disjoint proximinal subsets of the semimetric space (V, d) such that V = A ∪ B. The vertices u, v ∈ V are adjacent iff d(uv)⩽inf{d(xy):x∈Ay∈B}, and, for every p ∈ V , there is a path connecting A and B in G, and passing through p. It has been shown that a graph is path-proximinal if and only if all of its vertices are not isolated. It has also been shown that a graph is simultaneously proximinal and path-proximinal for an ultrametric if and only if the degree of each of its vertices is equal to 1.