A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Proximinal sets and connectedness in graphs




TekijätChaira Karim, Dovgoshey Oleksiy

KustantajaSpringer

Julkaisuvuosi2023

JournalJournal of Mathematical Sciences

Tietokannassa oleva lehden nimiJournal of Mathematical Sciences (United States)

Vuosikerta273

Numero3

Aloitussivu333

Lopetussivu350

DOIhttps://doi.org/10.1007/s10958-023-06502-1

Verkko-osoitehttps://doi.org/10.1007/s10958-023-06502-1


Tiivistelmä

TLet G be a graph with a vertex set V. The graph G is path-proximinal if there is a semimetric d : V × V → [0, ∞[and disjoint proximinal subsets of the semimetric space (V, d) such that V = A ∪ B. The vertices u, v ∈ V are adjacent iff d(uv)⩽inf{d(xy):x∈Ay∈B}, and, for every p ∈ V , there is a path connecting A and B in G, and passing through p. It has been shown that a graph is path-proximinal if and only if all of its vertices are not isolated. It has also been shown that a graph is simultaneously proximinal and path-proximinal for an ultrametric if and only if the degree of each of its vertices is equal to 1.



Last updated on 2024-26-11 at 20:36