A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A Calcination-Free Sol-Gel Method to Prepare TiO2-Based Hybrid Semiconductors for Enhanced Visible Light-Driven Hydrogen Production




TekijätYang Kang, Wei Dan, Jia Chunman, Li Jianwei

KustantajaWILEY-V C H VERLAG GMBH

Julkaisuvuosi2023

JournalChemPlusChem

Tietokannassa oleva lehden nimiCHEMPLUSCHEM

Lehden akronyymiCHEMPLUSCHEM

Sivujen määrä9

ISSN2192-6506

eISSN2192-6506

DOIhttps://doi.org/10.1002/cplu.202300172

Verkko-osoitehttps://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cplu.202300172

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/180006176


Tiivistelmä

In recent years, the sol-gel method has been extensively utilized to develop efficient and stable organic semiconductor composite titanium dioxide (TiO2) photocatalysts. However, the high-temperature calcination requirements of this method consume energy during preparation and degrade encapsulated organic semiconductor molecules, resulting in decreased photocatalytic hydrogen production efficiency. In this study, we found that by selecting an appropriate organic semiconductor molecule, 1,4-naphthalene dicarboxylic acid (NA), high-temperature calcination can be avoided in the sol-gel process, yielding an organic-inorganic hybrid material with stable and effective photocatalytic properties. The uncalcined material displayed a hydrogen production rate of 2920 +/- 15 mu mol g(-1) h(-1), which was approximately twice the maximum production rate observed in the calcined material. Likewise, the specific surface area of the uncalcined material, at 252.84 m(2) g(-1), was significantly larger compared to the calcined material. Comprehensive analyses confirmed successful NA and TiO2 doping, while UV-vis and Mott-Schottky tests revealed a reduced energy bandgap (2.1 eV) and expanded light absorption range. Furthermore, the material maintained robust photocatalytic activity after a 40-hour cycle test. Our findings demonstrate that by using NA doping without calcination, excellent hydrogen production performance can be achieved, offering a novel approach for environmentally friendly and energy-saving production of organic semiconductor composite TiO2 materials.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:58