A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Link Prediction with Continuous-Time Classical and Quantum Walks




TekijätGoldsmith Mark, Saarinen Harto, García-Pérez Guillermo, Malmi Joonas, Rossi Matteo AC, Maniscalco Sabrina

KustantajaMDPI

Julkaisuvuosi2023

JournalEntropy

Tietokannassa oleva lehden nimiENTROPY

Lehden akronyymiENTROPY-SWITZ

Artikkelin numero 730

Vuosikerta25

Numero5

Sivujen määrä15

DOIhttps://doi.org/10.3390/e25050730

Verkko-osoitehttps://doi.org/10.3390/e25050730

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179868462


Tiivistelmä
Protein-protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on six real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein-protein interactions, with performance rivalling the state-of-the-art.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:24