A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Siegel Zeros, Twin Primes, Goldbach's Conjecture, and Primes in Short Intervals




TekijätMatomäki Kaisa, Merikoski Jori

KustantajaOXFORD UNIV PRESS

Julkaisuvuosi2023

JournalInternational Mathematics Research Notices

Tietokannassa oleva lehden nimiINTERNATIONAL MATHEMATICS RESEARCH NOTICES

Lehden akronyymiINT MATH RES NOTICES

Artikkelin numero rnad069

Sivujen määrä48

ISSN1073-7928

eISSN1687-0247

DOIhttps://doi.org/10.1093/imrn/rnad069

Verkko-osoitehttps://doi.org/10.1093/imrn/rnad069

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179777742


Tiivistelmä
We study the distribution of prime numbers under the unlikely assumption that Siegel zeros exist. In particular, we prove forSigma(n <= X) Lambda(n)Lambda(+/- n+h)an asymptotic formula that holds uniformly for h=O(X). Such an asymptotic formula has been previously obtained only for fixed h in which case our result quantitatively improves those of Heath-Brown (1983) and Tao and Teravainen (2021). Since our main theorems work also for large h, we can derive new results concerning connections between Siegel zeros and the Goldbach conjecture and between Siegel zeros and primes in almost all very short intervals.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:31