A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants




TekijätAcero F., Acharyya A., Adam R., Aguasca-Cabot A., Agudo I., Aguirre-Santaella A., Alfaro J., Aloisio R., Crespo N.Á., Batista R.A., Amati L., Amato E., Ambrosi G., Angüner E.O., Aramo C., Arcaro C., Armstrong T., Asano K., Ascasibar Y., Aschersleben J., Backes M., Baktash A., Balazs C., Balbo M., Ballet J., Larriva A.B., Martins V.B., de Almeida U.B., Barrio J.A., Bastieri D., Baxter J.R., Tjus J.B., Benbow W., Bernardos-Martín M.I., Bernete J., Berti A., Bertucci B., Beshley V., Bhattacharjee P., Bhattacharyya S., Biland A., Bissaldi E., Biteau J., Blanch O., Bordas P., Bottacini E., Bregeon J., Brose R., Bucciantini N., Bulgarelli A., Capasso M., Dolcetta R.A.C., Caraveo P., Cardillo M., Carosi R., Casanova S., Cascone E., Cassol F., Catalani F., Cerruti M., Chadwick P., Chaty S., Chen A., Chernyakova M., Chiavassa A., Chudoba J., Coimbra-Araujo C., Conforti V., Contreras J.L., Costa A., Costantini H., Cristofari P., Crocker R., D'Amico G., D'Ammando F., De Angelis A., De Caprio V., de Gouveia Dal Pino E.M., de Ona Wilhelmi E., de Souza V., Delgado C., della Volpe D., Depaoli D., Di Girolamo T., Di Pierro F., Di Tria R., Di Venere L., Diebold S., Djuvsland J.I., Donini A., Doro M., Dos Anjos R.D.C., Dwarkadas V.V., Einecke S., Elsässer D., Emery G., Evoli C., Falceta-Goncalves D., Fedorova E., Fegan S., Ferrand G., Fiandrini E., Filipovic M., Fioretti V., Fiori M., Foffano L., Fontaine G., Fukami S., Galanti G., Galaz G., Gammaldi V., Gasbarra C., Ghalumyan A., Ghirlanda G., Giarrusso M., Giavitto G., Giglietto N., Giordano F., Giroletti M., Giuliani A., Giunti L., Godinovic N., Coelho J.G., Gréaux L., Green D., Grondin M.H., Gueta O., Gunji S., Hassan T., Heller M., Hernández-Cadena S., Hinton J., Hnatyk B., Hnatyk R., Hoffmann D., Hofmann W., Holder J., Horan D., Horvath P., Hrabovsky M., Hrupec D., Inada T., Incardona F., Inoue S., Ishio K., Jamrozy M., Janecek P., Martínez I.J., Jin W., Jung-Richardt I., Jurysek J., Kaaret P., Karas V., Katz U., Kerszberg D., Khélifi B., Kieda D.B., Kissmann R., Kleiner T., Kluge G., Kluzniak W., Knödlseder J., Kobayashi Y., Kohri K., Komin N., Kornecki P., Kubo H., La Palombara N., Láinez M., Lamastra A., Lapington J., Lemoine-Goumard M., Lenain J.P., Leone F., Leto G., Leuschner F., Lindfors E., Liodakis I., Lohse T., Lombardi S., Longo F., López-Coto R., López-Moya M., López-Oramas A., Loporchio S., Luque-Escamilla P.L., Macias O., Mackey J., Majumdar P., Mandat D., Manganaro M., Manicò G., Marconi M., Martí J., Martínez G., Martinez M., Martinez O., Mello A.J.T.S., Menchiari S., Meyer D.M.A., Micanovic S., Miceli D., Miceli M., Michalowski J., Miener T., Miranda J.M., Mitchell A., Mode B., Moderski R., Mohrmann L., Molina E., Montaruli T., Morcuende D., Morlino G., Morselli A., Mosè M., Moulin E., Mukherjee R., Munari K., Murach T., Nagai A., Nagataki S., Nemmen R., Niemiec J., Nieto D., Rosillo M.N., Nikolajuk M., Nishijima K., Noda K., Novosyadlyj B., Nozaki S., Ohishi M., Ohm S., Ohtani Y., Okumura A., Olmi B., Ong R.A., Orienti M., Orito R., Orlandini M., Orlando E., Orlando S., Ostrowski M., Oya I., Pantaleo F.R., Paredes J.M., Patricelli B., Pecimotika M., Peresano M., Pérez-Romero J., Persic M., Petruk O., Piano G., Pietropaolo E., Pirola G., Pittori C., Pohl M., Ponti G., Prandini E., Principe G., Priyadarshi C., Pueschel E., Pühlhofer G., Pumo M.L., Quirrenbach A., Rando R., Razzaque S., Reichherzer P., Reimer A., Reimer O., Renaud M., Reposeur T., Ribó M., Richtler T., Rico J., Rieger F., Rigoselli M., Riitano L., Rizi V., Roache E., Romano P., Romeo G., Rosado J., Rowell G., Rudak B., Sadeh I., Safi-Harb S., Saha L., Sailer S., Sánchez-Conde M., Sarkar S., Satalecka K., Saturni F.G., Scherer A., Schovánek P., Schussler F., Schwanke U., Scuderi S., Seglar-Arroyo M., Sergijenko O., Servillat M., Shang R.Y., Sharma P., Siejkowski H., Sliusar V., Słowikowska A., Sol H., Specovius A., Spencer S.T., Spengler G., Stamerra A., Stanič S., Starecki T., Starling R., Stolarczyk T., Pereira L.A.S., Suda Y., Suomijarvi T., Sushch I., Tajima H., Tam P.H.T., Tanaka S.J., Tavecchio F., Testa V., Tian W., Tibaldo L., Torres D.F., Tothill N., Vallage B., Vallania P., van Eldik C., van Scherpenberg J., Vandenbroucke J., Acosta M.V., Vecchi M., Vercellone S., Verna G., Viana A., Vignatti J., Vitale V., Vodeb V., Vorobiov S., Vuillaume T., Wagner S.J., Walter R., White M., Wierzcholska A., Will M., Williams D., Yang L., Yoshida T., Yoshikoshi T., Zaharijas G., Zampieri L., Zavrtanik D., Zavrtanik M., Zhdanov V.I., Z̆ivec M.

KustantajaElsevier B.V.

Julkaisuvuosi2023

JournalAstroparticle Physics

Tietokannassa oleva lehden nimiAstroparticle Physics

Artikkelin numero102850

Vuosikerta150

ISSN0927-6505

eISSN1873-2852

DOIhttps://doi.org/10.1016/j.astropartphys.2023.102850

Verkko-osoitehttps://doi.org/10.1016/j.astropartphys.2023.102850

Preprintin osoitehttps://bib-pubdb1.desy.de/record/582100/files/2303.15007.pdf


Tiivistelmä

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3 PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy X-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte-Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a 𝛾-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 h of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with (100) hours of exposure per source.



Last updated on 2025-27-03 at 21:49