A1 Refereed original research article in a scientific journal

The KMT2A recombinome of acute leukemias in 2023




AuthorsMeyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R

Publication year2023

JournalLeukemia

Journal name in sourceLeukemia

Journal acronymLeukemia

Volume37

Issue5

First page 988

Last page1005

ISSN0887-6924

eISSN1476-5551

DOIhttps://doi.org/10.1038/s41375-023-01877-1

Web address https://www.nature.com/articles/s41375-023-01877-1

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/179554228


Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-03 at 21:46