A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Evaluation of Spatiotemporal Fetal Cardiac Imaging Using Deep Learning Techniques




TekijätNidhi Dipak, Srivastav Khushboo, Heikkonen Jukka, Kanth Rajeev

ToimittajaSarika Jain, Sven Groppe, Nandana Mihindukulasooriya

Painos990

Konferenssin vakiintunut nimiInternational Health Informatics Conference

Julkaisuvuosi2023

JournalLecture Notes in Electrical Engineering

Kokoomateoksen nimiProceedings of the International Health Informatics Conference: IHIC 2022

Sarjan nimiLecture Notes in Electrical Engineering

Vuosikerta990

Aloitussivu285

Lopetussivu298

ISBN978-981-19-9089-2

eISBN978-981-19-9090-8

ISSN1876-1100

eISSN1876-1119

DOIhttps://doi.org/10.1007/978-981-19-9090-8_25

Verkko-osoitehttps://link.springer.com/chapter/10.1007/978-981-19-9090-8_25


Tiivistelmä

Fetal echocardiography is a standard diagnostic tool used to evaluate and monitor fetuses with a defective heart associated with a number of fetal conditions. Deep learning is a machine learning technology which can perform specific tasks with specific goals. Deep learning techniques are used to evaluate fetal cardiac ultrasound cine loops and improve the evaluation of fetal abnormalities. Convolutional neural network along with recurrent neural network was applied in this study as CNN + LSTM, CNN + GRU, and 3D CNN for the processing and classification of ultrasonographic cine loops into various classes. The models were able to sort the fetal cardiac cine loops into five standard views with 92.63%, 94.99%, and 82.69% accuracy, respectively. Furthermore, the models were able to diagnose Tricuspid atresia (TA) and Hypoplastic left heart syndrome (HLHS) with an accuracy of 94.61%, 91.99%, and 86.54%, respectively. These deep learning-based algorithms were found to be effective tools for evaluating and monitoring normal and abnormal fetal heart cine loops.



Last updated on 2024-26-11 at 21:27