A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A transference principle for systems of linear equations, and applications to almost twin primes




TekijätBienvenu Pierre-Yves, Shao Xuancheng, Teräväinen Joni

KustantajaMATHEMATICAL SCIENCE PUBL

Julkaisuvuosi2023

JournalAlgebra and Number Theory

Tietokannassa oleva lehden nimiALGEBRA & NUMBER THEORY

Lehden akronyymiALGEBR NUMBER THEORY

Vuosikerta17

Numero2

Aloitussivu497

Lopetussivu539

Sivujen määrä44

ISSN1937-0652

eISSN1944-7833

DOIhttps://doi.org/10.2140/ant.2023.17.497

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179477328


Tiivistelmä

The transference principle of Green and Tao enabled various authors to transfer Szemerédi’s theorem on long arithmetic progressions in dense sets to various sparse sets of integers, mostly sparse sets of primes. In this paper, we provide a transference principle which applies to general affine-linear configurations of finite complexity.

We illustrate the broad applicability of our transference principle with the case of almost twin primes, by which we mean either Chen primes or “bounded gap primes”, as well as with the case of primes of the form 
x2+y2+1. Thus, we show that in these sets of primes the existence of solutions to finite complexity systems of linear equations is determined by natural local conditions. These applications rely on a recent work of the last two authors on Bombieri–Vinogradov type estimates for nilsequences.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:10