A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
A transference principle for systems of linear equations, and applications to almost twin primes
Tekijät: Bienvenu Pierre-Yves, Shao Xuancheng, Teräväinen Joni
Kustantaja: MATHEMATICAL SCIENCE PUBL
Julkaisuvuosi: 2023
Journal: Algebra and Number Theory
Tietokannassa oleva lehden nimi: ALGEBRA & NUMBER THEORY
Lehden akronyymi: ALGEBR NUMBER THEORY
Vuosikerta: 17
Numero: 2
Aloitussivu: 497
Lopetussivu: 539
Sivujen määrä: 44
ISSN: 1937-0652
eISSN: 1944-7833
DOI: https://doi.org/10.2140/ant.2023.17.497
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/179477328
The transference principle of Green and Tao enabled various authors to transfer Szemerédi’s theorem on long arithmetic progressions in dense sets to various sparse sets of integers, mostly sparse sets of primes. In this paper, we provide a transference principle which applies to general affine-linear configurations of finite complexity.
We illustrate the broad applicability of our transference principle with the case of almost twin primes, by which we mean either Chen primes or “bounded gap primes”, as well as with the case of primes of the form
x2+y2+1. Thus, we show that in these sets of primes the existence of solutions to finite complexity systems of linear equations is determined by natural local conditions. These applications rely on a recent work of the last two authors on Bombieri–Vinogradov type estimates for nilsequences.
Ladattava julkaisu This is an electronic reprint of the original article. |