GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
: Gehrmann Sebastian, Bhattacharjee Abhik, Mahendiran Abinaya, Wang Alex, Papangelis Alexandros, Madaan Aman, McMillan-Major Angelina, Shvets Anna, Upadhyay Ashish, Bohnet Bernd, Yao Bingsheng, Wilie Bryan, Bhagavatula Chandra, You Chaobin, Thomson Craig, Garbacea Cristina, Wang, Dakuo, Deutsch Daniel, Xiong Deyi, Jin Di, Gkatzia Dimitra, Radev Dragomir, Clark Elizabeth, Durmus Esin, Ladhak Faisal, Ginter Filip, Winata Genta Indra, Strobelt, Hendrik, Hayashi, Hiroaki, Novikova Jekaterina, Kanerva Jenna, Chim Jenny, Zhou Jiawei, Clive Jordan, Maynez Joshua, Sedoc João, Juraska Juraj, Dhole Kaustubh, Chandu Khyathi Raghavi, Perez-Beltrachini Laura, Ribeiro Leonardo F.R., Tunstall Lewis, Zhang Li, Pushkarna Mahima, Creutz Mathias, White Michael, Kale Mihir Sanjay, Eddine Moussa Kamal, Daheim Nico, Subramani, Nishant, Dusek Ondrej, Liang Paul Pu, Ammanamanchi Pawan Sasanka, Zhu Qi, Puduppully Ratish, Kriz Reno, Shahriyar Rifat, Cardenas Ronald, Mahamood Saad, Osei Salomey, Cahyawijaya Samuel, Štajner Sanja, Montella Sebastien, Jolly Shailza, Mille Simon, Hasan Tahmid, Shen Tianhao, Adewumi Tosin, Raunak Vikas, Raheja Vipul, Nikolaev Vitaly, Tsai Vivian, Jernite Yacine, Xu Ying, Sang Yisi, Liu Yixin, Hou Yufang
: Wanxiang Che, Ekaterina Shutova
: Empirical Methods in Natural Language Processing
Publisher: Association for Computational Linguistics (ACL)
: Stroudsburg, PA
: 2022
: Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
: EMNLP 2022 - 2022 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Demonstrations Session
: 266
: 281
: 978-1-959429-41-8
: https://aclanthology.org/2022.emnlp-demos.27/
Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires everimproving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.