A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Categorizing TLS traffic based on JA3 pre-hash values
Tekijät: Heino Jenny, Hakkala Antti, Virtanen Seppo
Toimittaja: Shakshuki Elhadi
Konferenssin vakiintunut nimi: International Conference on Ambient Systems, Networks and Technologies Networks
Julkaisuvuosi: 2023
Journal: Procedia Computer Science
Kokoomateoksen nimi: The 14th International Conference on Ambient Systems, Networks and Technologies Networks (ANT 2022) and The 6th International Conference on Emerging Data and Industry 4.0 (EDI40)
Sarjan nimi: Procedia Computer Science
Vuosikerta: 220
Aloitussivu: 94
Lopetussivu: 101
eISSN: 1877-0509
DOI: https://doi.org/10.1016/j.procs.2023.03.015
Verkko-osoite: https://doi.org/10.1016/j.procs.2023.03.015
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/179257961
The JA3 algorithm for fingerprinting TLS client traffic has become a popular additional tool in the tool set of network security professionals. The pre-hash value of the JA3 fingerprint lists parameter values from the TLS handshake supported by the TLS client. In this paper we present two different machine learning methods for identifying the endpoint application from TLS traffic based on the JA3 pre-hash string. Both methods were able to identify applications from Mozilla in our sample set, but had more variation with other applications. The methods can be used for improving network security accuracy.
Ladattava julkaisu This is an electronic reprint of the original article. |