A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Categorizing TLS traffic based on JA3 pre-hash values




TekijätHeino Jenny, Hakkala Antti, Virtanen Seppo

ToimittajaShakshuki Elhadi

Konferenssin vakiintunut nimiInternational Conference on Ambient Systems, Networks and Technologies Networks

Julkaisuvuosi2023

JournalProcedia Computer Science

Kokoomateoksen nimiThe 14th International Conference on Ambient Systems, Networks and Technologies Networks (ANT 2022) and The 6th International Conference on Emerging Data and Industry 4.0 (EDI40)

Sarjan nimiProcedia Computer Science

Vuosikerta220

Aloitussivu94

Lopetussivu101

eISSN1877-0509

DOIhttps://doi.org/10.1016/j.procs.2023.03.015

Verkko-osoitehttps://doi.org/10.1016/j.procs.2023.03.015

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179257961


Tiivistelmä

The JA3 algorithm for fingerprinting TLS client traffic has become a popular additional tool in the tool set of network security professionals. The pre-hash value of the JA3 fingerprint lists parameter values from the TLS handshake supported by the TLS client. In this paper we present two different machine learning methods for identifying the endpoint application from TLS traffic based on the JA3 pre-hash string. Both methods were able to identify applications from Mozilla in our sample set, but had more variation with other applications. The methods can be used for improving network security accuracy.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:18