B2 Non-refereed book chapter or chapter in a compilation book

Artificial intelligence-based skin cancer diagnosis




AuthorsSubasi Abdulhamit, Qureshi Sadiq Ahmed

EditorsSubasi Abdulhamit

PublisherElsevier

Publication year2022

Book title Applications of Artificial Intelligence in Medical Imaging

Journal name in sourceApplications of Artificial Intelligence in Medical Imaging

Series titleArtificial Intelligence Applications in Healthcare & Medicine

First page 183

Last page205

ISBN978-0-443-18451-2

eISBN978-0-443-18450-5

DOIhttps://doi.org/10.1016/B978-0-443-18450-5.00006-2

Web address https://www.sciencedirect.com/science/article/abs/pii/B9780443184505000062


Abstract

The first melanoma tumor has affected millions of people across the globe and taken many human lives. It can be diagnosed in its early stage, therefore it becomes very important to detect it before it becomes lethal. The melanoma skin cancer can be detected from the images of tumor by applying various techniques of deep learning. Medical science has progressed to a large extent in recent times. Its progress can be catalyzed further with the help of technology such as artificial intelligence or deep learning. In the first stage of our study, we used CNN (convolutional neural network) and transfer learning for differentiating between normal and melanoma tumors. In the next stage, features of the image were extracted from different pretrained models and then these features were passed through global average pooling layer and a classifier was put on top of it. In the first stage, that is, end-to-end learning, MobileNet architecture achieved the highest F1 score of 0.8014. In feature extraction technique, the model in which features were extracted from MobileNet architecture and XGBoost was used as a classifier achieved the highest F1 score of 0.818.



Last updated on 2024-26-11 at 14:16