A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Higher uniformity of bounded multiplicative functions in short intervals on average




TekijätMatomäki Kaisa, Radziwiłł Maksym, Tao Terence, Teräväinen Joni, Ziegler Tamar

KustantajaANNALS MATHEMATICS, FINE HALL

Julkaisuvuosi2023

JournalAnnals of Mathematics

Tietokannassa oleva lehden nimiANNALS OF MATHEMATICS

Lehden akronyymiANN MATH

Vuosikerta197

Numero2

Aloitussivu739

Lopetussivu857

Sivujen määrä119

ISSN0003-486X

eISSN1939-8980

DOIhttps://doi.org/10.4007/annals.2023.197.2.3

Verkko-osoitehttps://doi.org/10.4007/annals.2023.197.2.3

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179188311


Tiivistelmä
Let lambda denote the Liouville function. We show that, as X-+ oo,2X Zsup X P(Y)ER[Y] degP 0 < theta < 1 fiixed but arbitrarily small. Previously this was only established for k < 1. We obtain this result as a special case of the corresponding statement for (non-pretentious) 1 -bounded multiplicative functions that we prove.In fact, we are able to replace the polynomial phases e(-P (n)) by degree k nilsequences F(g(n)Gamma). By the inverse theory for the Gowers norms this implies the higher order asymptotic uniformity result ZX in the same range of H.We present applications of this result to patterns of various types in the Liouville sequence. Firstly, we show that the number of sign patterns of the Liouville function is superpolynomial, making progress on a conjecture of Sarnak about the Liouville sequence having positive entropy. Secondly, we obtain cancellation in averages of lambda over short polynomial progressions (n + P1(m), ... , n + Pk(m)), which in the case of linear polynomials yields a new averaged version of Chowla's conjecture.We are in fact able to prove our results on polynomial phases in the wider range H > exp((log X)5/8+epsilon), thus strengthening also previous work on the Fourier uniformity of the Liouville function. 2X l lambda lUk+1([x,x+H]) dx = o(X)

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:31