A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Moduli of quadrilaterals and quasiconformal reflection
Tekijät: Nasyrov Semen, Sugawa Toshiyuki, Vuorinen Matti
Kustantaja: Academic Press Inc.
Julkaisuvuosi: 2023
Journal: Journal of Mathematical Analysis and Applications
Tietokannassa oleva lehden nimi: Journal of Mathematical Analysis and Applications
Artikkelin numero: 127092
Vuosikerta: 524
Numero: 2
eISSN: 1096-0813
DOI: https://doi.org/10.1016/j.jmaa.2023.127092
Verkko-osoite: https://doi.org/10.1016/j.jmaa.2023.127092
Preprintin osoite: https://arxiv.org/abs/2111.08304
We study the interior and exterior moduli of polygonal quadrilaterals. The main result is a formula for a conformal mapping of the upper half plane onto the exterior of a convex polygonal quadrilateral. We prove this by a careful analysis of the Schwarz-Christoffel transformation and obtain the so-called accessory parameters and then the result in terms of the Lauricella hypergeometric function. This result enables us to understand the dissimilarities of the exterior and interior of a convex polygonal quadrilateral. We also give a Mathematica algorithm for the computation. Then we study the special case of an isosceles trapezoidal polygon L and obtain two-sided estimates for the coefficient of quasiconformal reflection over L in terms of special functions and geometric parameters of L.