A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Moduli of quadrilaterals and quasiconformal reflection




TekijätNasyrov Semen, Sugawa Toshiyuki, Vuorinen Matti

KustantajaAcademic Press Inc.

Julkaisuvuosi2023

JournalJournal of Mathematical Analysis and Applications

Tietokannassa oleva lehden nimiJournal of Mathematical Analysis and Applications

Artikkelin numero127092

Vuosikerta524

Numero2

eISSN1096-0813

DOIhttps://doi.org/10.1016/j.jmaa.2023.127092

Verkko-osoitehttps://doi.org/10.1016/j.jmaa.2023.127092

Preprintin osoitehttps://arxiv.org/abs/2111.08304


Tiivistelmä

We study the interior and exterior moduli of polygonal quadrilaterals. The main result is a formula for a conformal mapping of the upper half plane onto the exterior of a convex polygonal quadrilateral. We prove this by a careful analysis of the Schwarz-Christoffel transformation and obtain the so-called accessory parameters and then the result in terms of the Lauricella hypergeometric function. This result enables us to understand the dissimilarities of the exterior and interior of a convex polygonal quadrilateral. We also give a Mathematica algorithm for the computation. Then we study the special case of an isosceles trapezoidal polygon L and obtain two-sided estimates for the coefficient of quasiconformal reflection over L in terms of special functions and geometric parameters of L.



Last updated on 2025-27-03 at 21:44