A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Understanding Electron Transfer Reactions Using Constrained Density Functional Theory: Complications Due to Surface Interactions
Tekijät: Hashemi Arsalan, Peljo Pekka, Laasonen Kari
Kustantaja: AMER CHEMICAL SOC
Julkaisuvuosi: 2023
Journal: Journal of Physical Chemistry C
Tietokannassa oleva lehden nimi: JOURNAL OF PHYSICAL CHEMISTRY C
Lehden akronyymi: J PHYS CHEM C
Vuosikerta: 127
Numero: 7
Aloitussivu: 3398
Lopetussivu: 3407
Sivujen määrä: 10
ISSN: 1932-7447
DOI: https://doi.org/10.1021/acs.jpcc.2c06537
Verkko-osoite: https://pubs.acs.org/doi/10.1021/acs.jpcc.2c06537
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/179053470
The kinetic rates of electrochemical reactions depend on electrodes and molecules in question. In a flow battery, where the electrolyte molecules are charged and discharged on the electrodes, the efficiency of the electron transfer is of crucial importance for the performance of the device. The purpose of this work is to present a systematic atomic-level computational protocol for studying electron transfer between electrolyte and electrode. The computations are done by using constrained density functional theory (CDFT) to ensure that the electron is either on the electrode or in the electrolyte. The ab initio molecular dynamics (AIMD) is used to simulate the movement of the atoms. We use the Marcus theory to predict electron transfer rates and the combined CDFT-AIMD approach to compute the parameters for the Marcus theory where it is needed. We model the electrode with a single layer of graphene and methylviologen, 4,4 '-dimethyldiquat, desalted basic red 5, 2-hydroxy-1,4-naphthaquinone, and 1,1-di(2-ethanol)-4,4-bipyridinium were selected for the electrolyte molecules. All of these molecules undergo consecutive electrochemical reactions with one electron being transferred at each stage. Because of significant electrode-molecule interactions, it is not possible to evaluate outer-sphere ET. This theoretical study contributes toward the development of a realistic-level prediction of electron transfer kinetics suitable for energy storage applications.
Ladattava julkaisu This is an electronic reprint of the original article. |