A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
RLScore: Regularized Least-Squares Learners
Tekijät: Tapio Pahikkala, Antti Airola
Kustantaja: MIT Press
Julkaisuvuosi: 2016
Journal: Journal of Machine Learning Research
Vuosikerta: 17
Aloitussivu: 1
Lopetussivu: 5
Sivujen määrä: 5
ISSN: 1532-4435
eISSN: 1533-7928
Verkko-osoite: http://www.jmlr.org/papers/v17/16-470.html
RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensure efficiency of both training and cross-validation. A simple API and extensive tutorials allow for easy use of RLScore.
Ladattava julkaisu This is an electronic reprint of the original article. |