A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

RLScore: Regularized Least-Squares Learners




TekijätTapio Pahikkala, Antti Airola

KustantajaMIT Press

Julkaisuvuosi2016

JournalJournal of Machine Learning Research

Vuosikerta17

Aloitussivu1

Lopetussivu5

Sivujen määrä5

ISSN1532-4435

eISSN1533-7928

Verkko-osoitehttp://www.jmlr.org/papers/v17/16-470.html


Tiivistelmä

RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensure efficiency of both training and cross-validation. A simple API and extensive tutorials allow for easy use of RLScore.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:35