A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Minimizers of abstract generalized Orlicz-bounded variation energy




TekijätEleuteri Michela, Harjulehto Petteri, Hästö Peter

KustantajaWiley

Julkaisuvuosi2022

JournalMathematical Methods in the Applied Sciences

Tietokannassa oleva lehden nimiMATHEMATICAL METHODS IN THE APPLIED SCIENCES

Lehden akronyymiMATH METHOD APPL SCI

Sivujen määrä15

ISSN0170-4214

eISSN1099-1476

DOIhttps://doi.org/10.1002/mma.9042

Verkko-osoitehttps://onlinelibrary.wiley.com/doi/10.1002/mma.9042

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/178878073

Preprintin osoitehttps://arxiv.org/abs/2112.06622


Tiivistelmä
A way to measure the lower growth rate of phi : Omega x [0, infinity) -> [0, infinity) is to require t (sic) phi (x, t)t(-r) to be increasing in (0, infinity). If this condition holds with r = 1, theninf (u is an element of f+W1,phi (Omega)) integral(Omega) phi(x, vertical bar del u vertical bar) dxwith boundary values f is an element of W-1,W-phi (Omega) does not necessarily have a minimizer. However, if phi is replaced by phi(p), then the growth condition holds with r = p > 1 and thus (under some additional conditions) the corresponding energy integral has a minimizer. We show that a sequence (u(p)) of such minimizers converges when p -> 1(+) in a suitable BV-type space involving generalized Orlicz growth and obtain the Gamma-convergence of functionals with fixed boundary values and of functionals with fidelity terms.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:31