A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases




TekijätKiiskinen Tuomo, Helkkula Pyry, Krebs Kristi, Karjalainen Juha, Saarentaus Elmo, Mars Nina, Lehisto Arto, Zhou Wei, Cordioli Mattia, Jukarainen Sakari, Rämö Joel T., Mehtonen Juha, Veerapen Kumar, Räsänen Markus, Ruotsalainen Sanni, Maasha Mutaamba, FinnGen; Niiranen Teemu, Tuomi Tiinamaija, Salomaa Veikko, Kurki Mitja, Pirinen Matti, Palotie Aarno, Daly Mark, Ganna Andrea, Havulinna Aki S., Milani Lili, Ripatti Samuli

KustantajaNature Portfolio

Julkaisuvuosi2023

JournalNature Medicine

Tietokannassa oleva lehden nimiNATURE MEDICINE

Lehden akronyymiNAT MED

Vuosikerta29

Aloitussivu209

Lopetussivu218

Sivujen määrä28

ISSN1078-8956

eISSN1546-170X

DOIhttps://doi.org/10.1038/s41591-022-02122-5

Verkko-osoitehttps://www.nature.com/articles/s41591-022-02122-5

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/178820864


Tiivistelmä

A new analysis of large biobanks uncovers genetic variants associated with longitudinal changes in medication for cardiometabolic diseases and presents polygenic scores of medication-use behavior.Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hypertension and type 2 diabetes in up to 193,933 individuals (55% women) in the FinnGen study. In meta-analyses of up to 567,671 individuals combining FinnGen with the Estonian Biobank and the UK Biobank, we discovered 333 independent loci (P < 5 x 10-9) associated with medication use. Fine-mapping revealed 494 95% credible sets associated with the total number of medication purchases, changes in medication combinations or treatment discontinuation, including 46 credible sets in 40 loci not associated with the underlying treatment targets. The polygenic risk scores (PRS) for cardiometabolic risk factors were strongly associated with the medication-use behavior. A medication-use enhanced multitrait PRS for coronary artery disease matched the performance of a risk factor-based multitrait coronary artery disease PRS in an independent sample (UK Biobank, n = 343,676). In summary, we demonstrate medication-based strategies for identifying cardiometabolic risk loci and provide genome-wide tools for preventing cardiovascular diseases.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:05