A2 Refereed review article in a scientific journal
Deep learning facilitates multi-data type analysis and predictive biomarker discovery in cancer precision medicine
Authors: Mathema Vivek Bhakta, Sen Partho, Lamichhane Santosh, Orešič Matej, Khoomrung Sakda
Publisher: Research Network of Computational and Structural Biotechnology
Publication year: 2023
Journal: Computational and Structural Biotechnology Journal
Journal name in source: Computational and structural biotechnology journal
Journal acronym: Comput Struct Biotechnol J
Volume: 21
First page : 1372
Last page: 1382
ISSN: 2001-0370
DOI: https://doi.org/10.1016/j.csbj.2023.01.043
Web address : https://doi.org/10.1016/j.csbj.2023.01.043
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/178764838
Cancer progression is linked to gene-environment interactions that alter cellular homeostasis. The use of biomarkers as early indicators of disease manifestation and progression can substantially improve diagnosis and treatment. Large omics datasets generated by high-throughput profiling technologies, such as microarrays, RNA sequencing, whole-genome shotgun sequencing, nuclear magnetic resonance, and mass spectrometry, have enabled data-driven biomarker discoveries. The identification of differentially expressed traits as molecular markers has traditionally relied on statistical techniques that are often limited to linear parametric modeling. The heterogeneity, epigenetic changes, and high degree of polymorphism observed in oncogenes demand biomarker-assisted personalized medication schemes. Deep learning (DL), a major subunit of machine learning (ML), has been increasingly utilized in recent years to investigate various diseases. The combination of ML/DL approaches for performance optimization across multi-omics datasets produces robust ensemble-learning prediction models, which are becoming useful in precision medicine. This review focuses on the recent development of ML/DL methods to provide integrative solutions in discovering cancer-related biomarkers, and their utilization in precision medicine.
Downloadable publication This is an electronic reprint of the original article. |