A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On von Neumann regularity of cellular automata




TekijätSalo Ville

KustantajaSPRINGER

Julkaisuvuosi2023

JournalNatural Computing

Tietokannassa oleva lehden nimiNATURAL COMPUTING

Lehden akronyymiNAT COMPUT

Sivujen määrä12

ISSN1567-7818

eISSN1572-9796

DOIhttps://doi.org/10.1007/s11047-022-09935-w

Verkko-osoitehttps://doi.org/10.1007/s11047-022-09935-w

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/178723717


Tiivistelmä
We show that a cellular automaton on a one-dimensional two-sided mixing subshift of finite type is a von Neumann regular element in the semigroup of cellular automata if and only if it is split epic onto its image in the category of sofic shifts and block maps. It follows from previous joint work of the author and Torma that von Neumann regularity is a decidable condition, and we decide it for all elementary CA, obtaining the optimal radii for weak generalized inverses. Two sufficient conditions for non-regularity are having a proper sofic image or having a point in the image with no preimage of the same period. We show that the non-regular ECA 9 and 28 cannot be proven non-regular using these methods. We also show that a random cellular automaton is non-regular with high probability.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:27