A1 Refereed original research article in a scientific journal
Spatial search by continuous-time quantum walks on renormalized Internet networks
Authors: Malmi Joonas, Rossi Matteo A.C., García-Pérez Guillermo, Maniscalco Sabrina
Publisher: AMER PHYSICAL SOC
Publication year: 2022
Journal: Physical Review Research
Journal name in source: PHYSICAL REVIEW RESEARCH
Journal acronym: PHYS REV RES
Article number: 043185
Volume: 4
Issue: 4
Number of pages: 10
eISSN: 2643-1564
DOI: https://doi.org/10.1103/PhysRevResearch.4.043185
Web address : https://doi.org/10.1103/PhysRevResearch.4.043185
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/178612151
We study spatial search with continuous-time quantum walks on real-world complex networks. We use smaller replicas of the Internet network obtained with a recent geometric renormalization method introduced by García Pérez et al., Nat. Phys. 14, 583 (2018). This allows us to infer for the first time the behavior of a quantum spatial search algorithm on a real-world complex network. By simulating numerically the dynamics and optimizing the coupling parameter, we study the optimality of the algorithm and its scaling with the size of the network, showing that on average it is considerably better than the classical scaling O(N), but it does not reach the ideal quadratic speedup O(,/N) that can be achieved, e.g. in complete graphs. However, the performance of the search algorithm strongly depends on the degree of the nodes and, in fact, the scaling is found to be very close to optimal when we consider the nodes below the 99th percentile ordered according to the degree.
Downloadable publication This is an electronic reprint of the original article. |