A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Cutting corners




TekijätSalo Ville

KustantajaAcademic Press

Julkaisuvuosi2022

JournalJournal of Computer and System Sciences

Tietokannassa oleva lehden nimiJ. Comput. System Sci.

Vuosikerta128

Aloitussivu35

Lopetussivu70

ISSN0022-0000

eISSN1090-2724

DOIhttps://doi.org/10.1016/j.jcss.2022.03.001

Verkko-osoitehttps://doi.org/10.1016/j.jcss.2022.03.001

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/177554087


Tiivistelmä

We define a class of subshifts defined by a family of allowed patterns of the same shape where, for any contents of the shape minus a corner, the number of ways to fill in the corner is the same. For such a subshift, a locally legal pattern of convex shape is globally legal, and there is a measure that samples uniformly on convex sets. We show by example that these subshifts need not admit a group structure by shift-commuting continuous operations. Our approach to convexity is axiomatic, and only requires an abstract convex geometry that is “midpointed with respect to the shape”. We construct such convex geometries on several groups, in particular strongly polycyclic groups and free groups. We also show some other methods for sampling finite patterns, and show a link to conjectures of Gottshalk and Kaplansky.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:05