A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Cutting corners
Tekijät: Salo Ville
Kustantaja: Academic Press
Julkaisuvuosi: 2022
Journal: Journal of Computer and System Sciences
Tietokannassa oleva lehden nimi: J. Comput. System Sci.
Vuosikerta: 128
Aloitussivu: 35
Lopetussivu: 70
ISSN: 0022-0000
eISSN: 1090-2724
DOI: https://doi.org/10.1016/j.jcss.2022.03.001
Verkko-osoite: https://doi.org/10.1016/j.jcss.2022.03.001
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/177554087
We define a class of subshifts defined by a family of allowed patterns of the same shape where, for any contents of the shape minus a corner, the number of ways to fill in the corner is the same. For such a subshift, a locally legal pattern of convex shape is globally legal, and there is a measure that samples uniformly on convex sets. We show by example that these subshifts need not admit a group structure by shift-commuting continuous operations. Our approach to convexity is axiomatic, and only requires an abstract convex geometry that is “midpointed with respect to the shape”. We construct such convex geometries on several groups, in particular strongly polycyclic groups and free groups. We also show some other methods for sampling finite patterns, and show a link to conjectures of Gottshalk and Kaplansky.
Ladattava julkaisu This is an electronic reprint of the original article. |