A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Utilising Simulated Tree Data to Train Supervised Classifiers




TekijätRönnholm P, Wittke S, Ingman M, Putkiranta P, Kauhanen H, Kaartinen H, Vaaja MT

ToimittajaA. Yilmaz, J. D. Wegner, R. Qin, F. Remondino, T. Fuse, I. Toschi

Konferenssin vakiintunut nimiInternational Society for Photogrammetry and Remote Sensing

Julkaisuvuosi2022

JournalInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

Kokoomateoksen nimiXXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission II

Tietokannassa oleva lehden nimiXXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II

Lehden akronyymiINT ARCH PHOTOGRAMM

Sarjan nimiInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

Vuosikerta43-B2

Aloitussivu633

Lopetussivu639

Sivujen määrä7

ISSN1682-1750

eISSN2194-9034

DOIhttps://doi.org/10.5194/isprs-archives-XLIII-B2-2022-633-2022

Verkko-osoitehttps://doi.org/10.5194/isprs-archives-XLIII-B2-2022-633-2022

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/177175882


Tiivistelmä
The aim of our research was to examine whether simulated forest data can be utilized for training supervised classifiers. We included two classifiers namely the random forest classifier and the novel convolutional neural network classifier that utilizes feature images. We simulated tree parameters and created a feature vector for each tree. The original feature vector was utilised with random forest classifier. However, these feature vectors were also converted into feature images suitable for input into a YOLO (You Only Look Once) convolutional neural network classifier. The selected features were red colour, green colour, near-infrared colour, tree height divided by canopy diameter, and NDVI. The random forest classifier and convolutional neural network classifier performed similarly both with simulated data and field-measured reference data. As a result, both methods were able to identify correctly 97.5 % of the field-measured reference trees. Simulated data allows much larger training data than what could be feasible from field measurements.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:22