A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Distinctive effects of SGLT2 inhibitors on angiogenesis in zebrafish embryos




TekijätHuttunen Roope, Sainio Annele, Hjelt Anja, Haapanen-Saaristo Anna-Mari, Määttä Jorma, Rummukainen Petri, Paatero Ilkka, Järveläinen Hannu

KustantajaELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER

Julkaisuvuosi2022

JournalBiomedicine and Pharmacotherapy

Tietokannassa oleva lehden nimiBIOMEDICINE & PHARMACOTHERAPY

Lehden akronyymiBIOMED PHARMACOTHER

Artikkelin numero 113882

Vuosikerta156

Sivujen määrä10

ISSN0753-3322

eISSN1950-6007

DOIhttps://doi.org/10.1016/j.biopha.2022.113882

Verkko-osoitehttp://dx.doi.org/10.1016%2Fj.biopha.2022.113882

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/177129221


Tiivistelmä
Sodium glucose cotransporter 2 (SGLT2) inhibitor canagliflozin has been found to increase the risk for lowerlimb amputations in type 2 diabetics about two-fold. Conversely, empagliflozin and dapagliflozin do not display a similar effect. A question arises whether the increased risk for minor amputations is associated only with canagliflozin or whether it is a class effect of SGLT2 inhibitors. Defective angiogenesis has a role in amputations. We compared the effects of empagliflozin, dapagliflozin and canagliflozin on angiogenesis in vivo using zebrafish model, and in vitro using human umbilical vein endothelial cells (HUVECs). The effects of SGLT2 inhibitors on the formation of intersegmental blood vessels (ISVs) of the zebrafish embryos were clarified. Additionally, transcriptome analysis was performed to explore whether putative angiogenesis-associated genes are differentially regulated by SGLT2 inhibitors. The effects of SGLT2 inhibitors on the viability of HUVECs were examined. We noticed that especially empagliflozin and also dapagliflozin significantly accelerated the formation of ISVs of zebrafish embryos. In contrast, canagliflozin was not able to stimulate ISV formation, and at high concentration, it was lethal to the embryos. Transcriptome analysis demonstrated that in empagliflozin-treated embryos compared to canagliflozin-treated embryos seven genes previously shown to contribute to angiogenesis were upregulated, and four downregulated. Canagliflozin at high concentrations, but not empagliflozin or dapagliflozin, decreased the viability of HUVECs and disrupted their capability to sprout. SGLT2 inhibitors differed in their effects on angiogenic processes in zebrafish embryos and on the viability of HUVECs suggesting that the risk of SGLT2 inhibitors for peripheral amputations likely differs.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:50