A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Explaining Classes through Stable Word Attributions




TekijätRönnqvist Samuel, Myntti Amanda, Kyröläinen Aki-Juhani, Ginter Filip, Laippala Veronika

ToimittajaSmaranda Muresan, Preslav Nakov, Aline Villavicencio

Konferenssin vakiintunut nimiAnnual Meeting of the Association for Computational Linguistics

Julkaisuvuosi2022

JournalAnnual Meeting of the Association for Computational Linguistics

Kokoomateoksen nimiThe 60th Annual Meeting of the Association for Computational Linguistics: Findings of ACL 2022

Tietokannassa oleva lehden nimiFINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022)

Sarjan nimiAnnual Meeting of the Association for Computational Linguistics

Vuosikerta60

Aloitussivu1063

Lopetussivu1074

Sivujen määrä12

ISBN978-1-955917-25-4

DOIhttps://doi.org/10.18653/v1/2022.findings-acl.85

Verkko-osoitehttps://aclanthology.org/2022.findings-acl.85

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176874206


Tiivistelmä
Input saliency methods have recently become a popular tool for explaining predictions of deep learning models in NLP. Nevertheless, there has been little work investigating methods for aggregating prediction-level explanations to the class level, nor has a framework for evaluating such class explanations been established. We explore explanations based on XLM-R and the Integrated Gradients input attribution method, and propose 1) the Stable Attribution Class Explanation method (SACX) to extract keyword lists of classes in text classification tasks, and 2) a framework for the systematic evaluation of the keyword lists. We find that explanations of individual predictions are prone to noise, but that stable explanations can be effectively identified through repeated training and explanation. We evaluate on web register data and show that the class explanations are linguistically meaningful and distinguishing of the classes.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:05