A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Towards Automatic Short Answer Assessment for Finnish as a Paraphrase Retrieval Task




TekijätChang Li-Hsin, Kanerva Jenna, Ginter Filip

ToimittajaEkaterina Kochmar, Jill Burstein, Andrea Horbach, Ronja Laarmann-Quante, Nitin Madnani, Anaïs Tack, Victoria Yaneva, Zheng Yuan, Torsten Zesch

Konferenssin vakiintunut nimiWorkshop on Innovative Use of NLP for Building Educational Applications

KustantajaAssociation for Computational Linguistics (ACL)

Julkaisuvuosi2022

Kokoomateoksen nimiProceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

Tietokannassa oleva lehden nimiBEA 2022 - 17th Workshop on Innovative Use of NLP for Building Educational Applications, Proceedings

Aloitussivu262

Lopetussivu271

ISBN978-1-955917-83-4

DOIhttps://doi.org/10.18653/v1/2022.bea-1.30

Verkko-osoitehttps://aclanthology.org/2022.bea-1.30/

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176823390


Tiivistelmä

Automatic grouping of textual answers has the potential of allowing batch grading, but is challenging because the answers, especially longer essays, have many claims. To explore the feasibility of grouping together answers based on their semantic meaning, this paper investigates the grouping of short textual answers, proxies of single claims. This is approached as a paraphrase identification task, where neural and non-neural sentence embeddings and a paraphrase identification model are tested. These methods are evaluated on a dataset consisting of over 4000 short textual answers from various disciplines. The results map out the suitable question types for the paraphrase identification model and those for the neural and non-neural methods.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:49